A Pretrainer's Guide to Training Data:

Measuring the Effects of Data Age, Domain Coverage, Quality, & Toxicity

Shayne Longpre¹, Gregory Yauney², Emily Reif³, Katherine Lee^{2,3}, Adam Roberts³,

Barret Zoph⁴, Denny Zhou³, Jason Wei⁴, Kevin Robinson³, David Mimno², Daphne Ippolito^{3,5}

¹MIT ²Cornell University ³Google Research ⁴OpenAl ⁵Carnegie Mellon University

All pretraining data is curated, but data curation decisions are not always disclosed.

- 1. Practitioners are guided by intuition.
- 2. Experiments are frequently repeated because results are not disclosed.
- 3. Data curation has large impact because pretrained models are reused.

We pretrain 28 LMs at the 1.5B-parameter scale on differently-curated pretraining datasets in order to measure the effects of curation choices.

Compute is expensive! But so is dark data & documentation debt.

Datasets: C4 and the Pile

Models: 1.5B-parameter decoder-only autoregressive transformers

Takeaways

- 1. Stale pretraining data matters and is not overcome by finetuning!
- 2. Temporal misalignment effects grow with model size.
- 3. "Quality" filters boost performance, even while reducing training data.
- 4. Toxicity filters hurt. Inverse toxicity filters can help a lot for some tasks.
- 5. Data heterogeneity and quantity matter most,

Setting: Pretrain, then finetune on downstream tasks individually

Data Age

Mismatch in data age between pretraining and evaluation data causes performance degradation.

- 1. Less impact than finetuning mismatch, but adds up.
- 2. Release age distributions for pretraining data.

Example dataset: PoliAff

Accuracy is higher when pretraining and eval year are closer in time, even after finetuning

especially web and books data.

Pretrained models become stale

Temporal degradation happens faster when evaluating old models on new benchmarks.

Toxicity filtering induces a tradeoff: reduces toxic generation at the cost of decreased toxicity identification.

Toxicity: Perspective API, a classifier that assigns every document a score from 0 (nontoxic) to 1 (toxic)

Toxicity and Quality

Quality: GLaM/PaLM classifier, Wikipedia + books are "high quality", every document gets a score from 0 (high quality) to 1 (low quality)

- Many downsides
- Lots of open questions!

Score Inverse Filter **Full Dataset** Identification T = 0.7T=0.5 T=0.95 T=0.9 -2% Toxicity Most Filtering -6% -20% -30% 10% Toxic Generation Score less toxic more toxic

If the goal is to identify toxic text, then training on toxic data is more effective

Content filtering impacts downstream QA performance

			QA domain							
	Filter	Data	Wiki	Web	Acad	CS	Mean			
Baseline	Full Data	100%	0	0	0	0	0			
Toxicity	Light	95%	-2.2	-1.1	0.2	0.2	-0.7			
	Heavy	76%	-4.2	-2.4	-1.1	-3.5	-2.7			
	Inverse	92%	0.4	-1.4	4.9	2.7	1.7			
	Light	91%	1.2	0.7	6.4	6.1	2.5			
Quality	Heavy	73%	-0.3	0.8	0.8	6.8	1.2			
	Inverse	73%	-5.0	-4.5	-2.7	-6.4	-3.1			

Toxicity filtering hurts
QA performance across
domains.

2. Quality filteringimproves performanceacross most domains,despite removing data.

Domain Coverage

Heterogeneous domains have biggest effect on QA performance

	Wiki	Web	Biomed	Academic	Common Sense	Contrast Sets	Average
ull Dataset (100%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0
No Social (99%)	-0.8	-3.7	0.1	3.5	-3.5	3.5	0.3
No Wiki (98%)	-1.3	-5.3	0.2	0.9	-4.4	7.2	-0.4
No Books (93%)	-3.5	-6.3	0.0	-1.6	-6.5	-4.4	-2.8

1. Removing Books and Common Crawl domains hurt

