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Why limited-precision privacy? New mechanisms 
for limited-precision local privacy

Experiments

Takeaways

Privacy definitions

indistin
guishability

local privacy

Consider a database  with rows in . A randomized 
mechanism  is -locally private if, for all pairs of possible rows 

, and a set of possible outputs :
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Pr [R(y) ∈ S] ≤ eϵ ⋅ Pr [R(y′�) ∈ S]

Consider a database  with rows in . A randomized 
mechanism  is ( , )-limited-precision locally private if, for all 
pairs of possible rows  with difference 

, and a set of possible outputs :
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R N ϵ
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∥y − y′ �∥1 ≤ N S ⊂ ℝm

Pr [R(y) ∈ S] ≤ eϵ ⋅ Pr [R(y′�) ∈ S]

plausible deniabilit
y

Privatizing text data is hard under local privacy.

Standard mechanisms for local privacy:

· We don’t need to worry about whole documents.

· We don’t want to care whether a single word shows up.

· Bag-of-words data is: 1.high-dimensional

2.sparse

3.bursty

· No bound on the frequencies in each observation.

· Local setting: can’t compute -sensitivity.ℓ1

First compress data and then add random noise, 
retaining large-scale correlations.

combines documents

low

· 9,528 consumer complaints about financial products 
and services across 7 categories released by the U.S. 
Consumer Finance Protection Bureau 


· 100-500 words in each document

1. LDA: Similarity between private and non-private topics

2. Frequency

frequencyhigh

1. Random

3. Embedding

cluster

4. Embedding

disperse

How should features be combined?

cat ocelotleopar
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combines features

Evaluate whether data with horizontal compression and 
private noise can produce useful semantic models 
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Jaccard similarity

Exclusivity ratio

Per-word

coherence
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Privacy parameters
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2. LSA: Predict category of private and non-private documents

LSA + random forest classification

Goal: 

Dataset: 
Compression: 

Vertical compression: 

Horizontal compression: 

· High-dimensional bags-of-words are a challenge for local privacy.

· Compression helps with stronger privacy guarantees within LPLP.

· Promising feature combination approaches:


· Distributing high-frequency features

· Random feature combination
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limited-precision local privacy (LPLP)

Original data Geometric noise

horizontal 
compression differentially private 

noise decompression

text aggregate data

compressed data aggregate data

public data

public models

compressed data
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https://priml-workshop.github.io/priml2019/
papers/PriML2019_paper_29.pdf

feature 
combination 
strategy

our focus

LPLP only guarantees documents are hard to 
distinguish from similar documents.

Informally: 

Isn’t text just histograms? Can’t we locally privatize those?

Frequency compression 

Works well


