Data Similarity is Not Enough to Explain Language Model Performance
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Why do language models perform better on some tasks than others? _ _ o
Is there evidence that either of these broad similarity

A language model will perform better on a task hypotheses account for the performance variation across

when the task’s data distribution is more similar tasks and examples that we can directly measure?
to the model’s pretraining data distribution.

task-level
similarity hypothesis

In some carefully controlled settings, but not in general!
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Multiple ways of measuring textual similarity
between pretraining dataset and downstream datasets
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KL-divergence from pretraining token distribution

Dataset similarity does not determine performance across tasks
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If th.e IS|m|lar|ty hypothesis is true, we expect to see Spearman p = — 0.06 (p = 0837)
S|gn|ﬁcant Spearman rank correlations between task Input perplexity (-) 0.09 0729 -0.13 0644 -0.24 0374 -0.16 0542 0.12 0664
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But we don't! After accounting for multiple comparisons

Dataset similarity does not determine performance across examples

Compare each downstream example to the entire pretraining dataset: calculate each example’s maximum cosine similarity to any pretraining document

Correct examples are not significantly more similar than incorrect examples More similar examples do not afford higher performance than less similar examples
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Which hypotheses are consistent with these results? How do these results fit iIn with related work?
1. The similarity measures we tried do not capture the true variation in e | Ms perform better on factoid QA examples with entities frequently found in
language that accounts for performance variation. the pretraining dataset. We ask a harder question: will a model perform well
We need new measures of textual similarity on an example if that example is similar to any pretraining document?
2. Existing benchmarks might already be so similar to web-scale e [t's clear that pretraining data matters! But our results make it increasingly
pretraining datasets that other factors determine performance. unlikely that similarity broadly construed is the most determinative factor for
3. Data similarity is not as important a factor in language model task performance
performance as commonly assumed. -,
We need to go beyond data similarity to explain task and example Paper:
difficulty with approaches like training data attribution Code + data:




