Probing Heterogeneous Pretraining Datasets with Small Curated Datasets
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Why do we need to characterize pretraining datasets?

« Seemingly innocuous dataset curation decisions impact models [1, 2].

o “Quality” filters are ubiquitous but often narrowly select data that is similar
to books and Wikipedia articles [2, 3].

* Recent work has found that pretraining data source composition affects
downstream performance [2, 4, 5].

 The era of free data is over. We need to be able to make decisions about
pretraining dataset composition.

What’s in language model pretraining datasets?

e Scale prevents us from exhaustively describing what is in the datasets [1].

* The Pile and C4 are two of the most-used pretraining datasets. They
consist of web-scraped data that is often described only by domain or
website of origin.

« WEe’ll use the Pile as a running example. It contains docs from 22 domains.
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Clustering pretraining datasets is a start
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Challenge: Difficult to characterize clusters. Some are easier to

qualitatively describe than othe
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Visualizing pretraining and downstream overlap
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Some task datasets are targeted, some are dispersed.

k UMARP is used for visualization, all clustering is in the original space.

f Dataset probing: Downstream datasets (e.g., benchmarks) are more curated. We can use them to characterize clusters of pretraining docs. \

Overlap of downstream datasets with clusters of pretraining data
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Each histogram corresponds to a cluster of pretraining documents.
Each bar represents the number of documents from a downstream dataset that are closest to that cluster’s centroid. J
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Dataset probing does not simply recover domains: overlap is not always explained by dataset source
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Takeaways

1. Well-curated small datasets can characterize large web-scraped
datasets, complementing current heterogeneity measures.

2. Even current broad evaluations are not enough to evaluate models’ data.

Future work

1. Can we build effective quality filters that use this finer-grained

characterization of pretraining data?

2. Can we prune pretraining datasets based on data overlap? Or is the
seemingly unrelated data necessary for linguistic support?



